Dynamical Instabilities in Differentially Rotating Stellar Systems

A. L. Varri ${ }^{1,2}$, E. Vesperini ${ }^{2}$, S. L. W. McMillan ${ }^{3}$, G. Bertin ${ }^{4}$

${ }^{1}$ University of Edinburgh (UK) $\quad{ }^{2}$ Indiana University (USA) $\quad{ }^{3}$ Drexel University (USA) $\quad{ }^{4}$ Università degli Studi di Milano (Italy)

Outline

- We study the emergence of dynamical instabilities in stellar dynamical models charac terized by a strong degree of differential rotation and relatively low values of the ratio
of
- The instabilities are dominated by coherent global modes with azimuthal number $m=$
1,2. For the relevant unstable modes, corotation occurs inside the rotating configuration. 1,2 . For the relevant unstable modes, corotation occurs inside the rotating configuration. - Such instabilities show striking similarities with the dynamical instabilities observed in
low $T /|W|$ differentially rotating fluid polytropes This erest
This result represents a first step in the investigation of the analogies between stellar and fluid rotating spheroidal systems in a regime currently unexplored.

Method and initial conditions

We consider the class of axisymmetric rotating equilibria [9] defined by the DF:

$$
\begin{equation*}
f_{W T}(I)=A \exp \left(-a E_{0}\right)\left\{\exp \left[-a\left(I-E_{0}\right)\right]-1+a\left(I-E_{0}\right)\right\} \tag{1}
\end{equation*}
$$

if $E \leq E_{0}$ and $f_{W T}(I)=0$ otherwise, with $I=E-\left[\omega J_{z} /\left(1+b J_{z}^{2} c\right)\right]$. The family of self-consistent models is characterized by two main parameters (Ψ, χ), measuring the consider configurations in the regime of strong differential rotation, that is, such that $0.4 \leq \hat{\omega} / \hat{\omega}_{\text {max }} \leq 1.0$, where $\hat{\omega}=3 \chi^{1 / 2}$ is the central dimensionless angular velocity.

Id	N	Ψ	χ	$\hat{\omega} / \hat{\omega}_{\text {max }}$	t	$\rho_{\text {max }} / \rho_{0}$	σ_{1}	$\sigma_{2} / 2$
C2R90	655366	2	3.92	0.9	0.16	5.37	2.90	0.75
C2R70	55536	2.37	0.7	0.14	3.35	3.66	0.58	
C2R50	65536	2.21	0.21	0.5	0.12	1.92	-	0.91
C2R40	65536	2	0.7	0.4	0.11	1.43		0.85

The dynamical evolution of the models is studied by means of N -body simulations performed with starlab. The systems are followed until $T / T_{D}=35$, where $T_{D}=$ $\left[3 \pi /\left(16 G \rho_{90}\right)\right]^{1 / 2}$ is the dynamical time associated with the sphere enclosing 90% of the mass of the system. Here the analysis focuses on model C2R90, for details about the other models see [10].

The instabilities are dominated by global $\mathrm{m}=1,2$ modes

The instabilities are studied by means of a Fourier analysis of the density distribution of the models. We define the complex coefficient associated w
of azimuthal number m as:
$C_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \rho(R, z, \phi ; T) e^{-i m \phi} d \phi \quad$ (2) with the normalized coefficient $A_{m}(R, z ; T)=C_{m}(R, z ; T) / C_{0}(R, z ; T)$. The tangent of the phase angle of the m-th mode is then defined as
$\phi_{m}=\tan ^{-1}\left[\frac{-\Im\left(A_{m}\right)}{\Re\left(A_{m}\right)}\right] \quad$ (3)
and the associated pattern speed is given by $\sigma_{m} / m=\left(\partial \phi_{m} / \partial T\right) / m$.

Fig. 1: Fourier analysis of the density of model C2R90. Top panel: Growth of the amplitude of the
Fourier coefficient $\left|A_{m}\right|$ for $m=1,2,3,4$. Bottom panels: Cosine of the phase angle ϕ_{m} for the dominant
modes $m=1,2$. Fourier coeffic
modes $m=1,2$

Curious about the initial
See [9] for details!

Morphological evolution

Fig. 2: Time evolution of the surface density of model C2R90, projected on the equatorial plane (x, y). An
$m=1$ (lop-sided) mode emerges by $T / T_{D}=5$ and then gives way to an $m=2$ (bar) mode by $T / T_{D}=30$
 contours correspond to $\int / \sum_{\text {max }}=0.77,0.65,0.0,0.3,0,1,0,0.5$,
dynamical time and spatial coordinates are in N-body units.

Corotation points appear when modes become unstable

The corotation point is defined as the radial position in the configuration at which the pattern speed of a given mode is equal to the angular velocity of he system $\omega\left(R_{\text {cor }}\right)=\sigma_{m} / m$ From the calculation of the pattern speed of the $m=1,2$ modes at different times of the evolution, it appears that
the corotation point associated with the $m=1$ mode disappears almost exactly when the $m=1$ becomes subdominant with respect to the $m=2$ mode ($T / T_{D} \approx 8$).

Fig. 3: Radial profile of the angular velocity of the model C2R90 at different times of the evolution. Thick
horizontal lines mark the pattern speeds of the two dominant modes $m=1,2$ in the two phases of the horizontal
evolution.

While in the moderate rotation regime the equilibria are dynamically stable and suited for describing rotating globular tation regime in which the configurations show an off-center
ther density maximum.

Analogies with differentially rotating fluid polytropes The surprising discovery of an unsta$m=1$ mode in polytropes with strong differential rotation [2] kindled revival of interest in the study of sta bilities of rotating fluids.
Numerical studies [5] [7] have confirmed that $m=1,2$ modes can be come unstable in a variety of differ-
entially rotating fluid models, having values of t as low as $t \approx 0.01$ [8]. The study of the stability of differentially rotating spherical shells sug gests that the unstable modes characterized b
The models presented in this study may be interpreted broadly as stellar systems examined by [2] and [7].

Fig. 4: Time evolution of the isodensity contours in the equatorial plane of a differentially rotating poly
tropic model with index $n=3.33$ and $t=0.14$ (taken from Fig 2 in $[2]$.

The role of the degree of differential rotation
Too simplistic to describe the emergence We further investigated the role of $\begin{array}{ll}\text { of dynamical instabilities in rotating stellar } \\ \text { systems by means of the parameter } t \text { alone! } & \text { the degree of differential rotation by } \\ \text { means of an additional series of } \mathrm{N}\end{array}$ systems by means of the parameter t alone! body simulations.
The initial configurations are characterized by a King (1966) density distribution with $\Psi=7$ in which the " j constant" rotation law is introduced
$\omega(R)=\omega_{c} A^{2} /\left(A^{2}+R^{2}\right) \quad(4)$
where R is the cylindrical radius and $A=R_{90} / n$.
The degree of differential rotation is measured by $d=n^{2}+1$. The global amount of rotation is measured by t $t_{e f f}$ denotes the value of t after a short initial transient phase)
Fig. $5:$: Green, yellow, and red dots denote stable, marginally stable, and unstable configurations, respec-
tively. Dashed lines mark the critical values $(t=0,14,0.27)$ for dynamical instability according to $[4]$ and tively. Dashed lines mark the critical values $(t=0$.
the sequence of Maclaurin ellipsoids (e.g., see $[3]$.

LV thanks D. C. Heggie for discussions and the Royal Commission fo the Exhibition of 1851 and The Gruber Foundation for support. GB is partially supported by the Italian MIUR.

References

[1] Bianchini, P., Varri, A. L., et al. 2013, ApJ, 772, 67 [31 Chandrasekhar S. . 1969 Ellipsoidal Fisure [3] Chandrasekhar, S. 1969 Ellipsoidal Figures of
Equilibrium, Yale Univ Press

[6] Portegies Zwart, S. F., et al. 2001, MNRAS, 321, 19
$[71$ Saiio, M.., et al. 2003, App, 595, 352
[8 Shibata, M., et al. 2002, MNRAS B] Shibata, M., et al. 2002, MNRAS, 334, L27
91 Varri, A. L. \& Bertin, G. 2012 A\&A 540, 101 Varri, A. L.,., Vesperini, E. et al. ApJ submitte [111] Watts, A. L., et al. 2005, ApIL, 618, L37

