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Outline

• We consider the construction of self-consistent models
of collisionless but quasi-relaxed stellar systems, in-
cluding the ingredients that lead to departures from
spherical symmetry.

• A two-parameter family of triaxial models that ex-
tend the spherical King models [1] to the case in which
an external tidal field is taken into account explicitly is
presented.

• We illustrate several properties that characterize the
intrinsic and the projected structure of the models

• The analysis of the relevant parameter space reveals
the existence of two tidal regimes and of a critical con-
dition in which the models are maximally extended.

1. The physical model

We consider a stellar system on a circular orbit of radius
R0 inside a “frozen” external potential ΦG with associa-
ted circular orbital frequency Ω. In the so-called “tidal
approximation”, the relevant Jacobi integral, with re-
spect to a frame of reference centered on the center of
mass of the stellar system, is given by:

H = (ẋ2 + ẏ2 + ż2)/2 + ΦT + ΦC , (1)

ΦT = Ω2
(

z2 − νx2
)

/2 (2)

with ν = 4 − κ2/Ω2, where κ is the epicyclic frequency at
R0. Note that we assume that tdyn ≪ 2π/Ω.

Distribution function

We focus on the extension of spherical King models [1]:

fK(H) = A[exp(−aH) − exp(−aH0)] (3)

if H ≤ H0 and fK(H) = 0 otherwise. The associated
density profile is thus given by:

ρ(ψ) = Âρ̂(ψ) = Âeψγ(5/2, ψ) (4)

where ψ = a{H0− [ΦC+ΦT ]} is the dimensionless escape
energy. We denote the central density by ρ0 = ρ[ψ(0)].
An equivalent physical model and choice for the distri-
bution function is considered also in [4].

2. The mathematical problem
Models are constructed by solving the Poisson equation
in dimensionless form (with r0 =

√

9/(4πGρ0a) as scale
length):

∇̂2ψ = −9

[

ρ̂(ψ)

ρ̂(Ψ)
+ ǫ(1 − ν)

]

, (5)

with the requirement of finiteness (Ψ) and regularity of
the solution at the origin. For negative values of ψ we
should refer to:

∇̂2ψ = −9ǫ(1 − ν) , (6)

i.e. the Laplace equation for ΦC, requiring that, at large
radii, the natural behavior aΦC → 0 is respected. An el-

liptic partial differential equation in a free boundary

problemmust be solved, for which we provided a solu-
tion up to 2nd-order in the perturbation parameter [2].
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Figure 1 Parameter
space for 2nd order
models. The up-
permost solid line
represents the critical
values of ǫ for models
with ν = 3; thin
solid lines represent
contour levels of δ.
The critical curves for
models with ν = 2, 1
(dashed, dot-dashed)
are also marked.

3. The Parameter Space
The models are characterized by:

• two physical scales (i.e., free constants A and a)

• two dimensionless parameters

Concentration ↔ Ψ ≡ ψ(0) (7)

Tidal strength ↔ ǫ ≡
Ω2

4πGρ0
(8)

We call “critical” models those that are bounded by the
critical zero-velocity surface. For each value of Ψ, the
critical value of the tidal parameter can be found by (nu-
merically) solving:

{

∂x̂ψ(r̂T , 0, 0; ǫcr) = 0

ψ(r̂T , 0, 0; ǫcr) = 0 ,
(9)

where r̂T is the tidal radius, i.e. the distance of from the
origin of the two nearby Lagrangian points of the three-
body problem considered in our physical picture.
Alternatively, the effect of the tidal field can be mea-
sured by the extension parameter:

δ ≡ r̂tr/r̂T , (10)

where r̂tr is the truncation radius of the correspond-
ing spherical King model. Two tidal regimes exist: sub-
critical models with δ ≪ δcr are only little affected by the
tidal perturbation, while models with δ ≈ δcr are maxi-
mally deformed. The parameter space for 2nd-order cri-
tical models is shown in Fig. 1.

4. The intrinsic density distribution
In general, the models are characterized by reflection
symmetry with respect to the three natural coordinate
planes and, with respect to the “unperturbed” config-
uration, by an elongation along the x̂-axis and a com-
pression along the ẑ-axis (see Fig. 3). The induced dis-
tortion is thus shaped by the geometry of the tidal po-
tential and depends on the coefficient ν.
The shape of the triaxial configuration can be described
in terms of the polar and equatorial eccentricities (see
Fig. 2); we derived analytically that in the innermost re-
gion they tend to non-vanishing central values and that
they are O(ǫ1/2).
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Figure 2 Profiles of
the polar (e; dashed)
and equatorial (η,
solid) eccentricities
of the isodensity sur-
faces for critical 2nd
order models with
ν = 3 and Ψ = 1, 3, 5, 7
(from left to right).
Dotted horizontal
lines show the central
eccentricity values.
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Figure 3 Intrinsic density profiles (normalized to the central value)
for critical 2nd order models with Ψ = 1, .., 10. Top panel (a): profile
of the triaxial models along the x̂-axis (red) and of the correspond-
ing spherical King models (black). Bottom panel (b): profile of the
models along the ŷ-axis (red) and the ẑ-axis (black).

5. The projected density distribution
By taking lines of sight different from the axes of the
symmetry planes, we have checked whether the pro-
jected models would exhibit isophotal twisting. For all
the cases considered, the position angle of the major axis
remains unchanged over the entire projected image.
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Figure 4 Left panel: Projection of a 2nd-order critical model (Ψ = 2
and ν = 3) along the lines of sight identified by (θ, φ). Right panel:
Ellipticity profiles of the projection along several lines of sight; dots
represent the locations of the isophotes drawn in the left panel,
which correspond to selected values of the projected density, nor-
malized to the central value, in the range [0.9, 10−6]. The arrow in-
dicates the position of the half-light isophote.

6. The kinematics
By construction, the models are characterized by
isotropic velocity dispersion. The intrinsic velocity dis-
persion can be determined as the 2nd moment in the ve-
locity space of the distribution function

σ2(ψ) =
2

5a

γ (7/2, ψ)

γ (5/2, ψ)
=

1

a
σ̂2(ψ) , (11)

and near the boundary of the configuration it scales as
σ̂2(ψ) ∼ (2/7)ψ. The projected velocity moment can be
calculated by integrating along the line of sight the cor-
responding intrinsic quantities.
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Figure 5 Projected velocity dispersion profiles (normalized to the
central value) for the ten critical 2nd order models illustrated in
Fig. 3; the models are viewed from the ŷ-axis and the profile along
the x̂-axis and the ẑ-axis in the projection plane are marked in red
and black, respectively.

Conclusions
• Two tidal regimes exist and are determined by the

combined effect of the tidal strength of the external
field and of the concentration of the stellar system.

• Global measures of the degree of triaxiality in terms of
the quadrupole moment tensor have been introduced
and calculated. We also provide an analytical estimate
based on themultipolar structure of the solution of the
Laplace equation (see [3] for details).

• The structure of the models can be described in terms
of polar and equatorial eccentricities that have finite
central values, O(ǫ1/2).

• The study of the relevant projected isophotes indicates
that no isophotal twisting occurs.

• Close to the boundary, the intrinsic and projected kine-
matics shows significant differences with respect to
spherical models.
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